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This paper discusses the research directions pursued jointly at the
Anthropic Signal Processing Group of the Oregon Graduate Institute
and at the Speech and Vision Laboratory of the Indian Institute of
Technology Madras. Current methods for speaker verification are based
on modeling the speaker characteristics using Gaussian mixture models
(GMM). The performance of these systems significantly degrades if the
target speakers use a telephone handset that is different from that used
while training. Conventional methods for channel normalization include
utterance-based mean subtraction (MS) and RelAtive SpecTrAl (RASTA)
filtering. In this paper we introduce a novel method for designing filters
that are capable of normalizing the variability introduced by different
telephone handsets. The design of the filter is based on the estimated
second-order statistics of handset variability. This filter is applied on the
logarithmic energy outputs of Mel spaced filter banks. We also demonstrate
the effectiveness of the proposed channel normalizing filter in improving
speaker verification performance in mismatched conditions. GMM-based
systems often use thousands of mixture components and hence require a
large number of parameters to characterize each target speaker. In order to
address this issue we propose an alternative to GMM for modeling speaker
characteristics. The alternative is based on speaker-specific mapping and
it relies on a speaker-independent representation of speech.  2000 Academic
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1. INTRODUCTION

Speech signal carries information from three main sources. These are
(i) linguistic information source, (ii) speaker-specific information source, and
(iii) source of information about the environment. In text-independent speaker
verification we are interested in effectively modeling the speaker information
contained in the speech signal. The other information sources are harmful for
the task.

The task of speaker verification is to detect whether or not a given speech
segment has been spoken by a claimed target speaker or not. Systems that use
mixture of Gaussian functions for characterizing the distribution of acoustic
vectors of target speakers have been shown to achieve good verification
accuracy [14]. The individual components of the GMM represent different
regions of the acoustic space. The unwanted linguistic variability of the acoustic
features is suppressed by the simultaneous use of two GMMs, one is a speaker-
specific GMM (λs), modeling the acoustic space of a given speaker, the second is
the so-called universal background model (λb) [15]. The universal background
model (UBM) is a speaker-independent model, trained using the speech data of
a large number of speakers. Thus the UBM represents a speaker-independent
distribution of the feature vectors. Speaker-specific models are obtained by
maximum a posteriori (MAP) adaptation of the UBM with the data of target
speakers. During the verification phase, the test utterance is scored using
the UBM and the speaker-specific model corresponding to the target speaker.
The claim is rejected or accepted by comparing the log likelihood ratio with a
threshold θ as illustrated by

∑
i

ln
p(xi |λs)
p(xi |λb)

reject
≶

accept
θ, (1)

where xi is a feature vector extracted from the ith frame.
The current approaches to speaker verification have some draw backs. In this

paper we address two of them, namely,

– It has been observed that a reasonable verification accuracy can be
achieved if the speaker uses the same handset and telephone line for training
and testing [14]. On the other hand, if the speaker uses a different telephone
handset while testing, the verification error increases by four to five times
[4, 13].

– GMM-based systems use thousands of mixture components making it
necessary to store a large number of parameters. Hence we identify the large
size of the GMM models as the second issue to be addressed in this paper.

The focus of the first part of this paper is on feature processing methods for
increasing the robustness of speaker verification systems in the presence of
channel variability.

The variability introduced by microphones in particular and channels in gen-
eral could significantly degrade the performance of both speech-recognition and
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speaker-verification systems. In automatic speech recognition (ASR) systems it
is typically possible to train the recognizers with speech recorded using different
telephone handsets and this makes the system relatively insensitive to hand-
set variability. On the other hand, in speaker verification, a statistical model
must be designed from a relatively small amount of speech data to represent
the acoustic features of the target speaker, and it is not always practical to have
training utterances collected from multiple telephone handsets. This results in
models which are highly biased toward the handset used to record the training
utterance. Hence features that are robust to channel variability is of significance
in speaker verification. In this paper we introduce a data-driven method for de-
signing channel normalizing filters. We call it data-driven because the method
of design optimizes an objective function and the optimization is done over a
significantly large amount of speech data. The resultant filter is applied on the
temporal trajectories of logarithmic spectral energies. Any stationary convolu-
tive distortion will be an additive component in the logarithmic spectral energy
domain, making it convenient for alleviating channel variability. Methods for
processing temporal trajectories of logarithmic energy has already been proven
to be effective in dealing with channel variability [8, 21].

The second part of this paper investigates an alternative approach to
GMM-based speaker-verification systems. The proposed method is based on
transforming a speaker-independent feature extracted from the signal to a
speaker-dependent representation [6, 10]. The speaker-independent feature can
be viewed as a parallel to the speaker-independent model used by the GMM-
based systems. The mapping is implemented using a neural network trained
for each of the target speakers. The speaker-specific mapping is shown to
have a significantly smaller number of parameters as compared to GMM-based
systems.

2. TEMPORAL PROCESSING FOR CHANNEL NORMALIZATION

2.1. Introduction to Temporal Processing

This section provides a brief introduction to temporal processing techniques
used to extract features from speech. For a detailed review refer to [2, 7].

Temporal processing in the context of this paper means modification of
temporal trajectory of a spectral component. This spectral component is the
output of an auditory-like (Mel or Bark) filter. Let us denote the spectrogram
resulting from short-time analysis as S(ωk, ti), k = 1,2, . . . ,N, i = 1,2, . . . , T ,
where N and T is the number of frequency bands and the number of time
steps used for the short-time analysis, respectively. The temporal processing
is done on logarithm of the squared magnitude, Sl(ωk, ti ) = log(|S(ωk, ti)|2).
Then, Sl(ωk, ti ), i = 1,2, . . . , T , is the time trajectory of the logarithmic energy
corresponding to the kth frequency band. The power spectrum of such a time
trajectory is referred to as the modulation spectrum [2]. The Nyquist frequency
of modulation spectrum is given by 0.5/(ti − ti−1). Typically, ti − ti−1 (which
is the window shift in the short-time analysis) is 10 ms. Hence the Nyquist
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FIG. 1. Illustration of the notion of modulation spectrum of speech.

frequency of the modulation spectrum is 50 Hz. Figure 1 illustrates the concept
of modulation spectrum.

It is straightforward to show that any convolutive distortion of the signal
affects the mean of the time trajectory (direct current or the DC component
of the modulation spectrum). Hence the mean subtraction (MS) operation
applied on the log-magnitude spectrum (or any of its linearly transformed
versions like cepstrum), popularly known as cepstral mean subtraction (CMS)
can be viewed as temporal processing which removes the DC component of
the modulation spectrum. MS has been shown to make the features robust to
channel variability [1, 18]. More recently RASTA processing was introduced
as an on-line alternative to MS [8]. The RASTA filter attenuates modulation
frequency components below 1 Hz and above 10 Hz. Thus it not only eliminates
stationary and slowly varying convolutive distortions but also eliminates fast
varying (higher than 10 Hz) modulation frequency components. RASTA-like
filters have enjoyed considerable success in dealing with channel mismatches
in ASR [8]. Recently, it was shown that modulation frequency components
below 1 Hz are important for speaker verification [21]. This suggested the
need for an alternative channel normalizing filter for speaker verification. The
studies on the effect of temporal filtering on speaker-verification performance
has shown that simultaneous use of MS and a low-pass filter with 10 Hz
cutoff yields improvement in verification performance when there are channel
mismatches [21].
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FIG. 2. Temporal trajectories of logarithmic energy from the 9th Mel frequency bank extracted
from the same speech segment passed through carbon button and electret type microphones.

In the current work we suggest a data-driven method for automatic design of
a temporal filter, which would suppress channel variability. This method avoids
the use of computationally expensive and time-consuming speaker-verification
experiments [21] in order to design appropriate temporal filters.

2.2. Characteristics of Channel Variability
Figure 2 illustrates some effects of channel mismatches on an utterance

passed through two different microphones. The figure shows the temporal
trajectory of logarithmic energy corresponding to the 9th Mel filter bank
(1.1 kHz). One microphone is of carbon button type and the other is of electret
type. These utterances are taken from the HTIMIT [16] data base, which
consists of TIMIT sentences passed through 10 different microphones. The
major difference between the two channels is the difference in the gain, which
shows up as a DC shift in the logarithmic domain. Note that this gain difference
will be nonuniform across frequency channels, depending on the frequency
characteristics of the two microphones. It can also be noted that the gain
difference is nonuniform across different segments of the utterance. Hence it
is clear that the variation in microphone type affects the temporal trajectory
of logarithmic energy in a complex manner. The following section develops a
method to mathematically analyze these variations in order to design filters
that suppress channel variability.

2.3. Channel Normalizing Filter Design
The objective is to design a filter which by acting on the time trajectories

of logarithmic energies will minimize the variability introduced by different
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microphones. The initial short-time processing using a 10 ms window shift
yields logarithmic energies from 19 Mel spaced filter banks, which is represented
by Sl(ωk, ti ), k = 1,2, . . . ,19. Mean of these feature vectors were removed from
each of the utterances to compensate for stationary convolutive distortions.
A one second long time trajectory corresponding to the kth Mel filter is denoted
by

Xkt =
[
Sl(ωk, t − 50) Sl(ωk, t − 49) . . . Sl(ωk, t + 50)

]T
,

and it represents the signal that needs to be filtered. Since the window shift
used in the short-time analysis is 10 ms, Xkt is a 101-dimensional vector. The
temporal filtering operation is represented by

Ykt =XTkthk,

where hk is the vector representing the time-reversed impulse response of
the implied filter and Ykt is the filtered signal. This filtering operation can be
considered as projecting the vector Xkt onto the direction hk .

For channel normalization, hk should point to the direction in the feature
space where the variability due to microphone mismatches is minimum. In
order to prevent trivial solution (hk = 0) we impose the additional constraint
that hk should retain as much of the relevant signal variability as possible
while suppressing the channel variability. The design criteria can be achieved
by selecting hk to maximize signal-to-noise ratio, ρk , given by

ρk = h
T
k 6skhk

hTk 6nkhk
, (2)

where 6sk is the covariance of the desired signal and 6nk is the covariance of the
noise. Since channel variability is unwanted it is referred to as noise. It is fairly
straightforward to show that the quantity ρk is maximized by setting hk to ek,
which corresponds to the eigen vector with largest eigen value of the generalized
eigen value problem

6skek = λk6nkek. (3)

This design process is repeated for each of the 19 Mel filter banks, thus yielding
19 temporal filters (ek, k = 1,2, . . . ,19), one corresponding to each of the 19
bands. It is evident from the above discussion that for the proposed filter design
method, we need only the second-order statistics of the channel and the desired
signal variability that is required in order to design channel normalizing filters.

2.3.1. Estimation of channel variability. This section describes a method
for estimating the second-order statistics of the variability introduced by
telephone handsets. A subset of HTIMIT data base [16], which consists
of TIMIT sentences passed through 10 different microphones and recorded
synchronously, is used for this purpose. Our subset consisted of speech passed
through four carbon button microphones and four electret microphones. These
utterances were aligned using a correlation-based measure [21]. Temporal
feature vectors extracted from speech recorded through ith and the j th
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microphones are denoted by Xkt (i) and Xkt (j). It should be noted that Xkt (i)
and Xkt (j) are extracted from the same sentence spoken by the same speaker
in the same phonetic context. The only difference between Xkt (i) and Xkt (j) is
that the speech signal from which they were extracted was recorded through
two different telephone handsets. Hence the difference vector, dk between these
two temporal vectors should point to the direction of microphone variability.
A set of these difference vectors,

dk =Xkt (i)−Xkt (j), ∀i, j ; i 6= j, (4)

which point in the direction of channel variability is computed over the
entire HTIMIT database. These difference vectors were extracted from various
combinations of microphones, which included carbon–carbon (intracarbon),
electret–electret (intraelectret), and carbon–electret. Hence this ensemble
of difference vectors covers a variety of mismatches. This computation is
independently done on all the 19 Mel frequency banks. The covariance of the
channel variability,

6nk =E
[
dkd

T
k

]
, (5)

required for the design of channel normalizing filters is then estimated. About
2,000,000 difference vectors were used to estimate the above 101 × 101 channel
covariance matrix.

2.3.2. Estimation of desired variability. For the design of a channel
normalizing filter we consider the variability introduced by a channel as the
undesired source of variability. As discussed in the beginning of this section
(Eq. (3)) in order to yield a nontrivial solution the minimization of channel
variability must be carried out while preserving as much of the desired signal
variance as possible.

Since we are after text-independent speaker verification, it is tempting to
consider the variability introduced by various speech sounds (which we call
phonetic variability) as undesirable. However, the simultaneous use of UBM
and the speaker-specific GMM effectively alleviates phonetic variability [15].
Moreover, since each of the mixture components are independently adapted
using speaker-specific data, the GMM-based speaker verification system can
potentially capture phoneme specific speaker characteristics. Hence, removing
phoneme variability could potentially degrade the performance. Therefore, in
our filter design we are considering the variability introduced by phonetic
classes as the signal variance which needs to be preserved. 1 For the filter to
be optimal for speaker verification we must constrain the solution of Eq. (3)
in order to prevent the removal of speaker variability. This can be done by
considering the combined speaker and phoneme variability as the desired source
of variability. Even though the current design is not taking this aspect into
account (hence in this respect is suboptimal), the capability of the filter in

1 Even though the acoustic units defined by the UBM may not have an exact one to one
correspondence with phonemes, we assume that preserving phonetic variability would lead to an
improvement in the capability of the UBM in efficiently segmenting the acoustic space.
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making speaker verification robust to channel mismatches is experimentally
demonstrated in the following section.

Phonetic variability which needs to be preserved in the 101-dimensional
temporal vector Xkt (i) is estimated as follows. Each of these temporal vectors
is labeled by the phoneme which is aligned to the center element. The class
conditional mean of the phoneme, p, is given by

µpk = 1
Np

∑
t∈p

1≤i<8

Xkt (i),

where the index i represents the handset index which ranges from 1 to 8 as we
are using TIMIT sentences recorded using 8 different telephone handsets. The
phonetic variability corresponding to the kth channel is computed as the across
class covariance 6sk given by

6sk =
∑
p

Np

N
[µp −µ][µp −µ]T ,

where Np is the number of temporal vectors which are labeled as phoneme p,
N is the total number of temporal vectors involved in the computation, and µ is
the global mean of the temporal vectors. The channel normalizing filter can now
be estimated for each of the frequency bands using the Eq. (3). The next section
discusses the characteristics of the resulting filter.

2.3.3. Filter characteristics. Irrespective of the frequency band, these fil-
ters exhibit similar characteristics. This indicates that the relative characteris-
tics of phoneme variability and channel variability are independent of the fre-
quency band. This observation is supported by earlier work in designing tem-
poral filters [2]. Hence for further discussion we will be describing only one
of these filters. Frequency response of the filter extracted for the 9th Mel fre-
quency band is shown in Fig. 3. Note that the since the filter was designed using
mean normalized utterances it does not significantly attenuate DC. 2 The filter
enhances the frequency components between 3 and 4 Hz. Spectral components
above 5 Hz are significantly attenuated. This is one of the main differences be-
tween this filter and the conventional RASTA filter which has a pass band from
1 to 10 Hz.

For an objective measure of the effectiveness of the proposed filter, we
computed the ratio of phoneme variance to channel variance before and
after filtering. We call this measure signal-to-noise ratio (SNR). The SNR, ρk ,
corresponding to the kth frequency band after applying the filter f is defined by

ρk = 10 log10

[
f T 6skf

f T 6nkf

]
, (6)

where 6nk is the channel covariance and 6sk is the phoneme covariance
extracted from the kth frequency band. Figure 4 shows SNR as a function of

2 NIST evaluation procedure allows for the off-line processing which is necessary for removing
mean.
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FIG. 3. Frequency response of the data-driven channel normalizing filter obtained from the 9th
Mel frequency band. The figure also shows the frequency response of the classical RASTA filter.

19 Mel frequency bands before and after temporal processing. The RASTA filter
significantly improves the SNR, and the proposed data-driven filter improves

FIG. 4. Ratio of phoneme to channel variance as a function of the 19 Mel spaced filter-banks for
various types of channel normalization.
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the SNR even further. This illustrates the effectiveness of the proposed method
in designing channel-normalizing filters.

2.4. Effect of Filtering on Text-Independent Speaker Verification
This section does a detailed analysis of the effect of the channel normalizing

filters on text-independent speaker verification performance.
2.4.1. Description of the task and data base. Continuous telephone

quality speech from the Switchboard-2 phase 3 corpus was used for all the
speaker verification experiments described in this section. This data set was
used by National Institute of Standards and Technology (NIST) in its 1999
official speaker verification evaluation [11]. The training data for each speaker
consists of about 2 min of data collected from two separate (about 1 min long)
sessions. Testing consists of utterances of durations anywhere between 1 s to
1 min.

The errors made by a speaker verification system can be of two types, false
acceptance (verifying an imposter as the claimed target) and false rejection
(rejecting a target speaker as an imposter). The trade-off between false
acceptance rate (FAR or PFA) and false rejection rate (FRR or PFR) is determined
by the threshold θ . A plot of FRR as a function of FAR is called the detection
(DET) curve. Equal error rate (EER) which is defined as the FAR (or FRR)
when the FAR is equal to the FRR, is used to evaluate the performance of
the verification system. NIST evaluates the performance of the systems using a
measure called decision cost function (DCF) where the cost of false alarms (CFR)
are 10 times more than the cost of false rejections (CFA). The DCF is defined by

DCF= CFRPFRPTarget +CFAPFAPNonTarget,

where CFR = 10.0, CFA = 1.0, PTarget = 0.01 and PNonTarget = 0.99. For more
details refer to [11]. Results were analyzed using both EER and DCF for the
following two different test conditions.

– Matched condition: The training and testing utterances are collected
from the same telephone handset. This condition is met only for the utterances
of the genuine speakers (target trials). No such restrictions are placed on
imposter trials.

– Mismatched condition: The test data is recorded through a handset
which is of a different type compared to the one used for recording the training
utterances. For example if the training utterance is recorded using a carbon
button microphone then the test utterance of the target speaker is recorded
using an electret type microphone. In mismatched condition also no restrictions
are placed on imposter trials.

2.4.2. Feature extraction and modeling. Spectral energies from Mel
spaced filter banks were derived by the processing used in Mel-cepstral analysis
of speech [12]. For the speaker verification experiments 19 filter banks falling
within the telephone bandwidth were used. The proposed data-driven temporal
filter is then applied on each of the 19 trajectories of logarithmic energies



Malayath et al.: Filter Design in Speaker Verification 65

FIG. 5. Plot illustrating the significant reduction in error due to the data-driven temporal filter
compared to the conventional mean subtraction (MS) and RASTA filtering.

after an utterance-based mean removal. From each of the 19 filtered time
trajectories, delta features are computed [5]. The delta features are appended
to the original feature vector to obtain a 38-dimensional feature vector. The
distribution of feature vectors is then whitened using a Karhunen–Loeve (KL)
transform computed from an independent data set. The first 36 components of
the KL transform are retained for further processing. We have observed that
whitening helps in reducing the number of mixture components without any
degradation in performance. The baseline system uses only an utterance-based
mean removal with appended delta and double delta features. The proposed
filter is also compared with the standard RASTA filter.

For modeling the extracted feature we used the GMM–UBM paradigm which
is described in [17]. A background model having 256 mixture components
was trained using data from 80 speakers. This model was then adapted
using the target speaker’s data to obtain speaker-dependent models. For the
implementation details of the system see [22].

2.4.3. Experimental results. Figure 5 illustrates the improvement due
the data-driven temporal filter over the systems which use mean subtraction
and RASTA filtering. In the mismatched condition, RASTA filtering performs
as good as MS. The data-driven filter, which is applied on top of utterance-
based mean subtraction, brings a significant reduction in error when there
is a handset type mismatch. This clearly illustrates the effectiveness of the
proposed filter in suppressing the handset variability. In matched condition all
three techniques perform equally well. Table 1 compares the EER and minimum
DCF resulting from the use of MS, RASTA, and the data-driven filtering in
combination with MS. In mismatched condition, the data-driven filter reduces
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TABLE 1

The Performance of Systems Using Mean Subtraction, RASTA Filtering, and the Data-
Driven Filter.

Mismatched Matched

Processing EER MDCF EER MDCF

MS 28.8% 0.084 4.9% 0.022
RASTA 27.9% 0.086 5.4% 0.027
MS and Data-Driven Filter 21.4% 0.078 4.9% 0.024

Note. The table provides the comparison using both equal error rate (EER) and minimum
decision cost function (MDCF).

the equal error rate by more than 25%. The MDCF is also reduced by about 10%
compared to RASTA. In matched condition the data-driven filter performs as
well as MS, but RASTA causes a degradation in performance. This degradation
is attributed to the removal of modulation frequency components between 0
and 1 Hz which have been shown to contain important information relevant for
speaker verification [21].

Since the data-driven filter was designed using mean normalized feature vec-
tors the filter does not attenuate DC component of the modulation spectrum
and hence makes it necessary to be used in conjunction with mean subtraction.
In many applications mean removal presents practical difficulties. For example,
in order to estimate the mean it is necessary to wait until the end of the utter-
ance. This might result in long delays which may not be acceptable for many
applications. If the signal contains speech from multiple speakers recorded us-

FIG. 6. Effect of mean removal on the frequency response of the data-driven filter.
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FIG. 7. Plot illustrating the effect of mean subtraction (MS) used in conjunction with the data-
driven filter.

ing different handsets then the estimated mean will contain information about
both the microphones and thus cannot be used for normalizing the channel vari-
ability. This motivates the need for designing a filter that will attenuate the DC
component of the modulation spectrum and thus avoids the use of mean sub-
traction. For designing such a filter the procedure described in Section 2.3 was
repeated using temporal trajectories from which means were not removed. Fig-
ure 6 compares this filter to the filter derived with mean removal. The only
significant difference between the two filters is in the frequency characteristics
below 1 Hz. The filter designed without mean subtraction attenuates modula-
tion frequency components below 1 Hz. The performance of these two filters are
compared with the RASTA filter in Fig. 7. From the DET curve it is clear that
the data-driven channel normalizing filter performs better than the RASTA fil-
ter. But its performance is worse than that obtained by the simultaneous use of
the channel normalizing filter and MS. This trend can be explained as follows.
The channel normalizing filter used in conjunction with MS does not attenuate
frequency components below 1 Hz (broken line in Fig. 6). The simultaneous use
of this filter and MS would imply a frequency response which is dependent on
the length of the utterance. The longer the utterance, the less the attenuation
of components between 0 and 1 Hz. On the other hand, the channel normaliz-
ing filter that is used without MS, attenuates the DC component (solid line in
Fig. 6). The frequency resolution of this filter is restricted to 1 Hz (since the
number of taps are 101). This causes the filter to attenuate frequency compo-
nents between 0 and 1 Hz irrespective of the length of the utterance. It has al-
ready been shown that modulation frequency components below 1 Hz are useful
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for speaker verification [21], and hence their attenuation causes the degradation
in speaker verification performance.

3. SPEAKER VERIFICATION BY SPEAKER-SPECIFIC MAPPINGS

3.1. Background

As mentioned in Section 1, GMM-based speaker verification systems use a
large number of parameters to model speaker characteristics. In this section,
we propose an alternative modeling method which would require a significantly
smaller number of parameters, and it would also avoid the need for training
a background model. Speech is produced by a constrained physical system.
Hence, we believe that the variability introduced by different speakers is
systematic [20] and can be modeled using fewer parameters than the current
GMM-based systems.

3.2. The Mapping Approach

The proposed method aims at suppressing the linguistic information from the
signal by employing two simultaneous representations of speech, one containing
lesser speaker-specific information than the other. By exploiting the difference
in the two speech representations, we attempt to focus on the speaker-specific
information source. This is done through the following three steps.

1. Extract features vectors, I, from the speech of the target speaker which
primarily contain linguistic information. This representation must be relatively
speaker-independent. We call this set of features speaker independent (SI)
representation.

2. Extract feature vectors, D, which carry both linguistic and speaker infor-
mation. Let us call this set of features speaker-dependent (SD) representation.

3. Estimate a functional mapping, M between D and I such that 〈(D −
M(I))2〉 is minimized.

Note that the mapping function attempts to transform the speaker-independ-
ent feature vector I into a speaker-dependent feature vectors D. Thus, if both
the I and D carry the identical linguistic information, the mapping M should
carry the information which is present in D and not in I, i.e., the speaker-specific
information.

During the verification phase, these speaker-specific models (M) are used to
accept or reject the identity claims of speakers. This is done by the following
steps.

1. Derive the SI and the SD feature vectors from the test utterance.
2. Transform I using the claimed speaker’s model to derive the estimate of

the SD feature vector, D̂ = M(I).
3. Compute a distance measure, S, between D and D̂.

Figure 8 illustrates the steps involved in the verification phase. If the speaker
is genuine then there should be a good match between D̂ and D. This will be
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FIG. 8. Illustration of speaker verification by speaker specific mapping.

reflected in the distribution of S computed over the test segment available for
verification. Thus, for example, the average of S should be small over a speech
segment if the speech belongs to the genuine speaker. In the current system we
accept or reject the claim based on the means of distributions, i.e., depending on
whether the mean of S computed over the text segment falls below or above a
predetermined threshold.

3.3. Speaker-Dependent Representation
Differences in vocal tract length is one of the major factors that introduce

speaker characteristics in the speech signal. These differences affect the
formant locations. This variability is thus in the details of the spectral envelope.
It has been shown that a smoothed critical-band spectrum (smoothed by using a
5th order all-pole model) suppresses speaker variability [6]. Hence, higher order
PLP features [6], LPC features, or Mel frequency warped filter-bank energies
are all good candidates for the speaker-dependent representation.

3.4. Speaker-Independent Representation
In the proposed mapping approach, the text independence is achieved by

the simultaneous use of SD and SI representations. The effectiveness of
SI representation is critical to the performance of the verification system.
In our initial experiments we have used lower order PLP features which
are effective in suppressing the speaker information while preserving the
important linguistic information [6]. Recently, we have initiated research in
novel data-driven techniques for deriving speaker-independent features. One
such technique is based on the use of Oriented Principal Component Analysis
(OPCA) to estimate directions in the feature space which suppresses the
speaker information [10]. This method first derives two vector spaces from a
conventional feature space, one carrying primarily speaker information and
the other carrying primarily linguistic information. These vector spaces are
further used by OPCA to estimate a subspace, which optimally suppresses
speaker information while preserving the linguistic information. The original
features are then projected into this subspace yielding feature vectors, which
are relatively speaker independent.
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FIG. 9. Derivation of the difference vectors.

3.4.1. Decomposition of the feature space. In this section a method
to decompose a conventional feature space (defined by PLP-cepstrum) into
subspaces carrying mainly linguistic information and speaker information is
presented. The initial feature representation x is the PLP-cepstrum and is
considered as a random vector. Figure 9 shows the feature vectors extracted
from a segment of speech from two speakers. The rectangular boxes represent
feature vectors extracted from a frame of speech data. It is assumed that the
segments of speech uttered by the two speakers are linguistically identical
(same phonemes) and are perfectly time allingned. Let x1 and x2 be the
cepstral vectors from two different phonemes uttered by the same speaker. The
difference vector carrying linguistic information is given by

dl = x2 − x1. (7)

By taking the difference between x2 and x1 the information which is common
to x2 and x1 is removed. Hence the static (stationary) speaker characteristics
and the channel effects are suppressed. Thus it can be concluded that the
difference vector dl mainly carry information about the linguistic variability.
Now consider the case where x1 and x2 represent the PLP-cepstrum extracted
from the same phoneme uttered by two different speakers. Since x1 and x2 are
features extracted from the speech signal corresponding to the same phoneme
their difference will mainly contain speaker information. The difference vector
representing speaker information is given by

ds = x2 − x1. (8)

Since x1 and x2 carry the same linguistic information the difference vector ds

will mainly carry information about the speaker variability and the difference in
the channel and environmental condition captured by the utterances of the two
speakers. If the channel and environmental conditions captured by the speech
signals of both the speakers are identical, then the random vectors dl and ds

capture the linguistic and speaker variability, respectively.
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3.4.2. Subspace-based feature extraction. The difference vectors dl and
ds were extracted from the NTIMIT database using sets of sentences which
were spoken by a set of speakers. The utterances were time aligned using DTW
to compute the difference vectors corresponding to speaker variability, ds. The
covariances of the difference vectors dl and ds are represented by Rl and Rs,
respectively. Since the objective is to maximize the variance caused by linguistic
information and minimize the variance caused by speaker information, the
objective function that we are interested in maximizing can be written as

E(dTl ei )2

E(dTs ei )2
= eTi Rlei

ei TRsei
= ρi . (9)

We are interested in finding the direction ei which maximizes the signal-to-noise
ratio, ρi . Deriving such directions (or projections) is nothing but the solution to
the following generalized eigen value problem,

Rleoi = λoiRseoi . (10)

This generalized eigen decomposition method is also known as oriented
principal component analysis (OPCA) [3]. Now the original feature vectors x
can be projected onto these eigen vectors to obtain the speaker-independent
representation I = ET

o x, where Eo is a matrix whose columns are composed
of the basis vectors. Note that since I is contained in a subspace of D,
D contains all the information that is captured by I. Hence if I is truly speaker
independent then the mapping M(I) will capture speaker information and will
be independent of linguistic information. Since this method does not put any
constraint on variability introduced by environment (like handset) we hope that
both I and D will be affected by environment in a similar manner and hence the
mapping M(I) will be independent of the acoustic environment.

3.5. Some Potential Advantages of Speaker-Specific Mapping over GMM
One of the conceptual advantages of the mapping-based approach is:

– Unlike the current mainstream speaker-verification techniques, which
rely exclusively and rather blindly on large training databases, the mapping
technique could in principle capitalize on the hard-wired knowledge in estima-
tion of speaker-independent features from the speech signal. Thus if the rep-
resentations I and D carry the same linguistic and environmental information
then the mapping will capture only the speaker specific information. We are
currently working toward the development of such features.

Some practical advantages are:

– The mapping-based method does not require the construction of a
background model, avoiding the need for a large database of background-
speakers.

– GMMs used for speaker verification have tens of thousands of free
(trainable) parameters. The mapping-based method will typically have only a
few hundred free parameters, yielding computational advantage.
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TABLE 2

Equal Error Rates for Three Verification Experiments: Exp 1, Mapping from 5th to 12th
Order PLP Cepstral Coefficients; Exp 2, Mapping from OPCA Features to 12th Order
PLP Cepstral Coefficients; Exp 3, Baseline System Using a 128-Component Mixture

Model

Testing condition Exp 1 Exp 2 Exp 3

3 s matched 23.1% 19.4% 11.3%
mismatched 36.4% 30.7% 26.6%

10 s matched 16.5% 12.7% 6.6%
mismatched 32.7% 25.0% 18.6%

30 s matched 12.5% 9.3% 4.9%
mismatched 28.5% 22.5% 17.0%

3.6. Experimental Results
Speaker verification experiments were conducted on the SWITCHBOARD

database with 40 target speakers which form a subset of the data used by
NIST in 1998 speaker recognition evaluation [13]. Two minutes of speech
was used for training the mapping models and segments of approximately
3, 10, and 30 s duration were used independently for verification. Results
of these experiments for two different experimental setups are presented in
Table 2. In the first experiment we used 7th order PLP cepstral coefficients
as the SI representation and 14th order PLP cepstral coefficients were used
as the SD representation. For the second experiment we used the oriented
PCA features (using the projection into the subspace spanned by the first
six oriented principal components [10]) as the SI representation. Since the
multilayer feed-forward networks are universal approximators [9], we use them
to estimate the mapping function. For both the experiments a neural network
with a single hidden layer with 30 units was used for capturing the mapping.
We notice that the OPCA features consistently outperform the conventional
PLP features over all testing conditions. A GMM system was used as the
baseline and the equal error rate is about half that of the mapping system in
matched condition. The number of parameters used by the GMM system is
4992 (256 × 19 + 256 × 19 + 256), whereas the mapping system uses only 600
parameters (6× 30+ 30× 14).

3.7. Discussion
The results indicate that the performance of the mapping-based method is

encouraging even though the error is still higher as compared to our GMM
system. However, any complementary information given by the mapping system
can be used to further improve the performance of the GMM system as described
in [19]. From the table it is also evident that, compared to PLP features, the
use of oriented PCA-based features as the speaker-independent representation,
results in a significant reduction in error. This suggests that, by using better
speaker-independent representation the performance of the proposed mapping-
based speaker verification system can be improved.
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4. SUMMARY

In this paper we have first proposed a method for normalizing channel mis-
matches for speaker-verification applications. The channel normalization is
achieved through filtering the time trajectories of logarithmic filter-bank en-
ergies. A novel method to estimate the statistics of the variability introduced
by the channel is also presented. The channel normalizing filter is designed to
optimally suppress the channel variability under the constraint of preserving
phonetic variability. The data-driven method uses only the second-order statis-
tics and thus the solution is obtained by solving a straightforward eigen value
problem. The filter emphasizes the modulation frequency components between
3 and 4 Hz. The gain of the filter drops off fairly sharply beyond 5 Hz. The pro-
posed filtering method performs significantly better than the earlier methods
including spectral mean subtraction and RASTA filtering. On the 1999 NIST
speaker-verification task we observed about 25% relative error reduction in mis-
matched condition without any degradation in matched condition [11].

We have also proposed and investigated an alternative to the Gaussian mix-
ture model (GMM) in text-independent speaker verification. This alternative is
based on speaker-specific mapping. Compared to the conventional GMM sys-
tem, the proposed mapping method uses a much smaller number of parameters
to model speaker information. The performance of the new technique is still
not on par with the GMM-based systems. However, there seems to be poten-
tial for improvement of the technique as our ability of deriving the speaker-
independent information of speech improves. This has been demonstrated by
speaker-independent speech representation based on oriented principal compo-
nent analysis (OPCA), which has shown an advantage over the more conven-
tional low-order PLP in speaker verification.
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